4.6 Article

The UV-optical galaxy color-magnitude diagram.: I.: Basic properties

Journal

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume 173, Issue 2, Pages 293-314

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/521402

Keywords

galaxies : evolution; galaxies : fundamental parameters; galaxies : luminosity function, mass function; galaxies : statistics; ultraviolet : galaxies

Ask authors/readers for more resources

We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV-r)(0.1) versus M-r,M-0.1 galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV-r)(0.1) color distribution at each M-r,M-0.1 is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity, with a distinct blue peak visible up to M-r,M-0.1 similar to -23. The r(0.1)-band luminosity functions vary systematically with color, with the faint-end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one-quarter of the color variation along the blue sequence is due to dust, with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low-mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of similar to 10(10.5) M-circle dot, galaxies with low ratios of current to past averaged star formation rate begin to dominate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available