4.8 Article

Mitotic kinase Aurora-A phosphorylates RASSF1A and modulates RASSF1A-mediated microtubule interaction and M-phase cell cycle regulation

Journal

ONCOGENE
Volume 26, Issue 55, Pages 7700-7708

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1210575

Keywords

tumor suppressor; mitotic kinase; RASSF1A; Aurora-A; cell cycle; microtubules

Funding

  1. NCI NIH HHS [CA113868, CA86945] Funding Source: Medline
  2. NIDDK NIH HHS [DK067271] Funding Source: Medline

Ask authors/readers for more resources

RASSF1A (RAS-association domain family 1, isoform A) is a newer tumor suppressor that binds to and stabilizes microtubules as well as induces M-phase cell cycle arrest. Several other proteins that interact with and stabilize microtubules also undergo mitotic phase phosphorylation to regulate microtubule dynamics and M-phase cell cycle progression. Currently, however, there is a paucity of information regarding the phosphorylation status of RASSF1A and its regulation during mitosis. In this study, for the first time, we demonstrate that Aurora-A is a RASSF1A kinase and, to the best of our knowledge, this is also the first study reporting the identification of a kinase for RASSF1A. We show that the mitotic kinase Aurora-A directly interacts with and phosphorylates RASSF1 and that RASSF1A is phosphorylated by Aurora-A during mitosis. These findings therefore link an important oncogenic mitotic kinase to regulate RASSF1A tumor suppressor. Aurora-A appears to phosphorylate RASSF1A at Threonine202 and/or Serine203 that reside within the known microtubule-binding domain of RASSF1A. Substitutions of these residues with glutamic acid at both positions, mimicking constitutive phosphorylation of RASSF1A, disrupt RASSF1A interactions with microtubules and abolish its ability to induce M-phase cell cycle arrest. Our results further demonstrate that Aurora-A overexpression also interferes with RASSF1A-mediated growth suppression. In view of our results, we propose that Aurora-A-mediated phosphorylation of RASSF1A is a novel mechanism that regulates the ability of this tumor suppressor to interact with microtubules and modulate M-phase cell cycle progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available