4.6 Article

Chiral-selective protection of single-walled carbon nanotube photoluminescence by surfactant selection

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 111, Issue 48, Pages 17894-17900

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp071410d

Keywords

-

Ask authors/readers for more resources

We study the effects of adding H2O2 to acid-purified and unpurified single-walled carbon nanotubes (SWNTs) in aqueous suspensions using photoluminescence (PL) and optical absorption spectroscopies. The addition of H2O2 to suspensions of unpurified SWNTs results in a rapid (1-2 h) quenching of the photoluminescence from all tubes, whereas H2O2 addition to acid-purified SWNTs causes the nanotube PL to grow in intensity over a period of several days before decaying in a tube-specific manner that depends on the binding strength of the surfactant sheath. With the appropriate choice of surfactants, the PL for specific acid-purified SWNTs can be protected such that novel mid-gap and phonon-assisted absorption and emission transitions can be observed without the obscuring effects associated with emission from other nanombes. The H2O2 treatment also results in a reduction of the high-energy absorption background that has been associated with either carbonaceous impurities or the SWNT pi-plasmon oscillation. An understanding of the related mechanisms leads to a new method for separating nanotubes by type based on selective oxidation followed by selective precipitation. These findings offer the possibility of efficiently separating large quantities of nanotubes by chirality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available