4.6 Article

A rouse-tube model of dynamic rubber viscoelasticity

Journal

JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
Volume 40, Issue 49, Pages 14725-14744

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1751-8113/40/49/008

Keywords

-

Ask authors/readers for more resources

The dynamic-mechanical response of a polymer network has been calculated using a stress-based Rouse model formalism. In contrast to the previous work, this improved formulation incorporates appropriate boundary conditions and provides a smooth crossover from the classical equilibrium result of rubber elasticity to the short time-scale relaxation. We develop a consistent implementation of the classical tube model, which is merged with the Rouse dynamics to take into account the entanglement effects. In a polymer network, crosslinks prevent the global reptation and constraint release. Entanglements thus acquire a different topological meaning and have a much stronger effect on the resulting mechanical response. We construct a dynamic stress tensor for a polymer network, which naturally covers the whole frequency/time range. Using this stress tensor, we first examine the equilibrium response to small shear and uniaxial deformations, and then investigate the linear dynamic response of a network for all the cases where the stress-tensor computations are analytically tractable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available