4.6 Article

SERS-based detection in an optofluidic ring resonator platform

Journal

OPTICS EXPRESS
Volume 15, Issue 25, Pages 17433-17442

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.15.017433

Keywords

-

Categories

Funding

  1. NIBIB NIH HHS [K25 EB006011-02, K25 EB006011] Funding Source: Medline

Ask authors/readers for more resources

The development of surface enhanced Raman scattering (SERS) detection has made Raman spectroscopy relevant for highly sensitive lab-on-a-chip bio/chemical sensors. Despite the tremendous benefit in specificity that a Raman-based sensor can deliver, development of a lab-on-a-chip SERS tool has been limited thus far. In this work, we utilize an optofluidic ring resonator (OFRR) platform to develop a SERS-based detection tool with integrated microfluidics. The liquid core optical ring resonator (LCORR) serves both as the microfluidic sample delivery mechanism and as a ring resonator, exciting the metal nanoclusters and target analytes as they pass through the channel. Using this OFRR approach and R6G as the analyte, we have achieved a measured detection limit of 400 pM. The measured Raman signal in this case is likely generated by only a few hundred R6G molecules, which foreshadows the development of a SERS-based lab-on-a-chip bio/chemical sensor capable of detecting a low number of target analyte molecules. (c) 2007 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available