4.4 Article

Structure/function analysis of the interaction of adenomatous polyposis coli with DNA polymerase β and its implications for base excision repair

Journal

BIOCHEMISTRY
Volume 46, Issue 49, Pages 13961-13974

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi701632e

Keywords

-

Funding

  1. NCI NIH HHS [CA-100247, CA-097031, R01 CA100247, R01 CA097031] Funding Source: Medline

Ask authors/readers for more resources

Mutations in the adenomatous polyposis coli (APC) gene are associated with an early onset of colorectal carcinogenesis. Previously, we described a novel role for the APC polypeptide in base excision repair (BER). The single-nucleotide (SN) and long-patch (LP) BER pathways act to repair the abasic sites in DNA that are induced by stressors, such as spontaneous oxidation/reduction, alkylation, and hyperthermia. We have shown that APC interacts with DNA polymerase beta(Pol-beta) and flap endonuclease 1 (Fen-1) and blocks Pol-beta-directed strand-displacement synthesis. In this study, we have mapped the APC interaction site in Pol-beta and have found that Thr79, Lys81, and Arg83 of Pol-beta were critical for its interaction with APC. The Pol-beta protein (T79A/K81A/R83A) blocked strand-displacement DNA synthesis in which tetrahydrofuran was used as DNA substrate. We further showed that the APC-mediated blockage of LP-BER was due to inhibition of Fen-1 activity. Analysis of the APC-mediated blockage of SN-BER indicated that the interaction of APC with Pol-beta blocked SN-BER activity by inhibiting Pol-beta-directed deoxyribose phosphate lyase activity. Collectively, our findings indicate that APC blocked both Pol-beta-directed SN- and LP-BER pathways and increased sensitivity of cells to alkylation induced DNA damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available