4.7 Article

Microfluidic biomechanical device for compressive cell stimulation and lysis

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 128, Issue 1, Pages 108-116

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2007.05.050

Keywords

microfluidic device; MCF7 cells; compressive stress; cell viability; mechanical lysis

Ask authors/readers for more resources

The physical forces to which living cells are most commonly exposed are fluid shear, pressure, and stretch. These mechanical stimulations influence the physiological and pathological condition of the organism, which induces many aspects of human health and disease. In this study, a new kind of microfluidic biomechanical device has been presented for compressive stimulation and lysis of cells. Mechanical stress is applied to the cells with the deflection of the poly(dimethylsiloxane) membrane between two microchannels, formed by multilayer soft lithography. The membrane functions as an on-off valve for closing the fluid channel and a loading membrane for applying compressive stress. As a demonstration of the feasibility of this microfluidic device, the viability of mammary gland epithelial (MCF7) cells in response to compressive stress is assessed by the change of fluorescence intensity with calcein AM. It is also confirmed that the cells are deformed and lysed under compression by the deflected membrane. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available