4.6 Article

Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 111, Issue 49, Pages 12702-12710

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp076104e

Keywords

-

Ask authors/readers for more resources

We derived an intrinsic kinetic equation for the four-electron oxygen reduction reaction (ORR) in acidic media using free energies of activation and adsorption as the kinetic parameters. Our kinetic model consists of four essential elementary reactions: a dissociative adsorption (DA) and a reductive adsorption (RA), which yield two reaction intermediates, 0 and OH; a reductive transition (RT) from 0 to OH; and a reductive desorption (RD) of OH. Analytic expressions were found for the 0 and OH adsorption isotherms by solving the steady-state rate equations. For the ORR on Pt(111) in 0.1 M HClO4 solution, we analyzed the measured polarization curves, thereby deducing activation free energies that are consistent with the values 0 0.46 eV) is not the rate-determining step from theoretical calculations. The reductive adsorption (AG*RA (RDS) for the ORR on Pt because dissociative adsorption (Delta G(DA)*(0) 0.26 eV) offers a more favorable pathway DA at high potentials. It, however, generates strongly adsorbed O. The high activation barriers for the 0 to OH T 0 = 0.45 eV) cause a large potential loss for the transition (Delta G(RD)(*0) = 0.50 eV) and OH desorption (Delta G(RD)(*0) desorption- limited ORR. As the OH coverage increases to a constant value with decreasing potential, the Tafel slope increases to the value determined by a symmetric electron-transfer coefficient. We discuss the role of adsorption isotherm in kinetic analysis and, via activity-and-barrier plots, illustrate why the RDS may vary with reaction conditions or may not exist. Recognizing such features of electrocatalytic reactions can facilitate reaching the long-standing goal of quantitative descriptions and predictions of electrocatalysts' activities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available