4.7 Article

The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 22, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2822021

Keywords

-

Ask authors/readers for more resources

Hybrid functionals are responsible for much of the utility of modern Kohn-Sham density functional theory. When rigorously applied to solid-state metallic and small band gap systems, however, the slow decay of their nonlocal Hartree-Fock-type exchange makes hybrids computationally challenging and introduces unphysical effects. This can be remedied by using a range-separated hybrid which only keeps short-range nonlocal exchange, as in the functional of Heyd [J. Chem. Phys. 118, 8207 (2003)]. On the other hand, many molecular properties require full long-range nonlocal exchange, which can also be included by means of a range-separated hybrid such as the recently introduced LC-omega PBE functional [O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006)]. In this paper, we show that a three-range hybrid which mainly includes middle-range Hartree-Fock-type exchange and neglects long- and short-range Hartree-Fock-type exchange yields excellent accuracy for thermochemistry, barrier heights, and band gaps, emphasizing that the middle-range part of the 1/r potential seems crucial to accurately model these properties. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available