4.6 Article

Population differences in the human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene polymorphism detected by using genotyping method

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 225, Issue 3, Pages 251-254

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2007.08.010

Keywords

arsenic; AS3MT; single nucleotide polymorphism (SNP); worldwide populations; genotyping method; PCR-RFLP

Ask authors/readers for more resources

Arsenic poisoning from drinking groundwater is a serious problem, particularly in developing Asian countries. Human arsenic (+3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite. Recently, a single nucleotide polymorphism (SNPs; rs 17885947, M287T (T860C)) in the AS3MT gene was shown to be related to enzyme activity and considered to be related to genetic susceptibility to arsenic. In the present study, a useful genotyping method for M287T was developed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Applying this method, the genotype distribution of M287T in Ovambo (n=185), Turkish (n=191), Mongolian (n=233), Korean (n=200), and Japanese (n=370) populations were investigated. The mutation frequencies in Asian populations were relatively lower than those of African and Caucasian populations, including those from previous studies: the frequencies of mutation in the Mongolian, Korean, and Japanese populations were 0.040, 0.010, and 0.010, respectively. In the course of this study, a PCR-based genotyping method that is inexpensive and does not require specialized equipment was developed. This method could be applied to a large number of residents at risk for arsenic poisoning. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available