4.5 Article

Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam

Journal

OPTICS COMMUNICATIONS
Volume 280, Issue 2, Pages 487-491

Publisher

ELSEVIER
DOI: 10.1016/j.optcom.2007.08.032

Keywords

-

Categories

Ask authors/readers for more resources

We provide a quantitative explanation of the mechanism of the far-field intensity modulation induced by a nanoparticle in a focused Gaussian laser beam, as was demonstrated in several recent direct detection studies. Most approaches take advantage of interference between the incident light and the scattered light from a nanoparticle to facilitate a linear dependence of the signal on the nanoparticle volume. The phase relation between the incoming field and the scattered field by the nanoparticle is elucidated by the concept of Gouy phase. This phase relation is used to analyze the far-field signal-to-noise ratio as a function of exact nanoparticle position with respect to the beam focus. The calculation suggests that a purely dispersive nanoparticle should be displaced from the Gaussian beam focus to generate a far-field intensity change. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available