4.6 Article

Acetylation of β-cyclodextrin surface-functionalized cellulose dialysis membranes with enhanced chiral separation

Journal

LANGMUIR
Volume 23, Issue 26, Pages 12990-12996

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la7026384

Keywords

-

Ask authors/readers for more resources

The enhanced enantiomeric separation of racemic phenylalanine solution has been demonstrated by the membrane-based chiral resolution method using an acetylated beta-cyclodextrin-immobilized cellulose dialysis membrane. beta-Cyclodextrin (CD) was first immobilized onto the surface of commercial cellulose dialysis membranes, followed by the acetylation reaction through the treatment of the membranes with acetic anhydride to form the chiral selective acetylated beta-cyclodextrin-immobilized cellulose dialysis membrane. The acetylated CD-immobilized membrane exhibits enantioselectivity in the range of 1.26-1.33 depending on the acetylation time. The improvement in enantioselectivity after acetylation was mainly attributed to the better discrimination ability of acetylated CD and the decrease in membrane pore size. Molecular modeling simulations indicate that the acetylation of hydroxyl groups would result in a CD conformation with torus distortions and would create higher steric hindrance for penetrants. As a result, compared to the original CD, the acetylated CD may have less effective binding but better discrimination of enantiomers. The energy drop is only 3 kcal/mol between different enantionters before and after the binding of phenylalanine with an unmodified CD. The energy drop increases to 10 kcal/mol if acetylated CD is employed as the chiral selector, showing stronger characteristics for chiral selection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available