4.6 Article

Structural and magnetic properties of gold and silica doubly coated γ-Fe2O3 nanoparticles

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 111, Issue 50, Pages 18512-18519

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0757457

Keywords

-

Ask authors/readers for more resources

Extensive structural and magnetic characterization measurements were carried out on gold and silica doubly coated gamma-Fe2O3 nanoparticles, which were recently demonstrated to have an efficient photothermal effect and high transverse relaxivities for MRI applications. Powder X-ray diffraction and X-ray absorption spectroscopy show the phase of the uncoated and coated nanoparticles to be that of the gamma-Fe2O3 structure. The sizes, structure, and chemical compositions of the narroparticles were determined by transmission electron microscopy. The magnetization results indicate that coating of the iron oxide nanoparticles by gold/silica decreases the blocking temperature from 160 to 80 K. Such a decrease can be well-explained by spin disorder, causing reduction of the effective volume of the gamma-Fe2O3 core. Moreover, it was found that in the temperature (7) range between 100 K and room temperature, the gold/silica coating can cause a slight magnetic change in the y-Fe,03 cores from superparamagnetic to almost superparamagnetic. Finally, it was found that the coercivity for both the uncoated and the coated nanoparticles decreases almost linearly with T-1/2 with the former decreasing faster than the latter, and this coercivity result confirms that the blocking temperature is decreased by gold/silica coating. These results are valuable for evaluating the future applications of this class of multifunctional, hybrid magnetic nanoparticles in biomedicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available