3.8 Article

Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.mseb.2007.10.004

Keywords

ZnO nanorod; branched microrods; nanofabrication; transferable nanoarchitectures

Ask authors/readers for more resources

This paper presents an inexpensive and fast fabrication method for one-dimensional (1D) ZnO nanorod arrays and branched two-dimensional (2D), three-dimensional (3D) - nanoarchitectures. Our synthesis technique includes the use of an aqueous solution route and post-growth rapid thermal annealing. It permits rapid and controlled growth of ZnO nanorod arrays of 1D - rods, 2D - crosses, and 3D - tetrapods without the use of templates or seeds. The obtained ZnO nanorods are uniformly distributed on the surface of Si substrates and individual or branched nano/microrods can be easily transferred to other substrates. Process parameters such as concentration, temperature and time, type of substrate and the reactor design are critical for the formation of nanorod arrays with thin diameter and transferable nanoarchitectures. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and Micro-Raman spectroscopy have been used to characterize the samples. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available