4.5 Article

Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 111, Issue 50, Pages 13949-13956

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0747297

Keywords

-

Ask authors/readers for more resources

The effects of surface dimensions and topology on the adsorption of water on a graphite surface at 298 K were investigated using the grand canonical Monte Carlo (GCMC) simulation. Regarding the surface topology, we specifically considered the functional group and its position on the surface. The hydroxyl group (OH) is used as a model for the functional group. For describing the interaction of water, we used the potential model proposed by Muller et al., and the simulated isotherms of water in slit pores are found to depend on the position and concentration of the functional group. The onset of adsorption shifts to lower pressure when the concentration of functional group increases or when the functional group is positioned at the center of the graphene surface. The configuration of a group of functional groups also affects the adsorption isotherm. In all cases investigated, we have found that the hysteresis loop always exists, and the loop size depends on the concentration of the functional group and its position. Finally, we tested the molecular model of water adsorption on a functional graphite pore against the experimental data of a commercial activated carbon. The agreement is found to be satisfactory when the model porous solid is composed of pores having width in the range between 10 and 20 angstrom and functional groups positioned at the center of the graphitic wall.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available