4.7 Review

Spitzer Space Telescope spectral observations of AGB stars in the Fornax dwarf spheroidal galaxy

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 382, Issue 4, Pages 1889-1900

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2007.12501.x

Keywords

stars : AGB and post-AGB; stars : atmospheres; stars : carbon; stars : mass-loss

Funding

  1. STFC [PP/D000955/1] Funding Source: UKRI
  2. Science and Technology Facilities Council [PP/D000955/1] Funding Source: researchfish

Ask authors/readers for more resources

We have observed five carbon-rich asymptotic giant branch (AGB) stars in the Fornax dwarf spheroidal (dSph) galaxy, using the Infrared Spectrometer on board the Spitzer Space Telescope. The stars were selected from a near-infrared survey of Fornax and include the three reddest stars, with presumably the highest mass-loss rates, in that galaxy. Such carbon stars probably belong to the intermediate-age population (2-8 Gyr old and metallicity of [Fe/H] similar to -1) of Fornax. The primary aim of this paper is to investigate mass-loss rate, as a function of luminosity and metallicity, by comparing AGB stars in several galaxies with different metallicities. The spectra of three stars are fitted with a radiative transfer model. We find that mass-loss rates of these three stars are 4-7 x 10(-6) M-circle dot yr(-1). The other two stars have mass-loss rates below 1.3 x 10(-6) M-circle dot yr(-1). We find no evidence that these rates depend on metallicity, although we do suggest that the gas-to-dust ratio could be higher than at solar metallicity, in the range 240 to 800. The C2H2 bands are stronger at lower metallicity because of the higher C/O ratio. In contrast, the SiC fraction is reduced at low metallicity due to low silicon abundance. The total mass-loss rate from all known carbon-rich AGB stars into the interstellar medium (ISM) of this galaxy is of the order of 2 x 10(-5) M-circle dot yr(-1). This is much lower than that of the dwarf irregular galaxy Wolf Lundmark Melotte (WLM), which has a similar visual luminosity and metallicity. The difference is attributed to the younger stellar population of WLM. The suppressed gas-return rate to the ISM accentuates the difference between the relatively gas-rich dwarf irregular and the gas-poor dSph galaxies. Our study will be useful to constrain gas and dust recycling processes in low-metallicity galaxies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available