4.7 Article

Calculation of two-dimensional infrared spectra of ultrafast chemical exchange with numerical Langevin simulations

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 23, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2806179

Keywords

-

Ask authors/readers for more resources

We combine numerical Langevin simulations with numerical integration of the Schrodinger equation to calculate two-dimensional infrared spectra of ultrafast chemical exchange. This provides a tool to model and interpret such spectra of molecules undergoing chemical processes, such as isomerization and solvent exchange reactions. Two-dimensional infrared spectroscopy has already been used to extract reaction rates for ultrafast chemical reactions. We demonstrate that these spectra are not only sensitive to the rates, but also to the finite duration of the exchange. This is emphasised by comparing with the popular Kubo two-state jump models, which do not account for finite exchange times. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available