4.8 Article

Quasiparticle bands in cuprates by quantum-chemical methods:: Towards an ab initio description of strong electron correlations

Journal

PHYSICAL REVIEW LETTERS
Volume 99, Issue 25, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.99.256404

Keywords

-

Ask authors/readers for more resources

Realistic electronic-structure calculations for correlated Mott insulators are notoriously difficult. Here we present an ab initio multiconfiguration scheme that adequately describes strong correlation effects involving Cu 3d and O 2p electrons in layered cuprates. In particular, the O 2p states giving rise to the Zhang-Rice band are explicitly considered. Renormalization effects due to nonlocal spin interactions are also treated consistently. We show that the dispersion of the lowest band observed in photoemission is reproduced with quantitative accuracy. Additionally, the evolution of the Fermi surface with doping follows directly from our ab initio data. Our results thus open a new avenue for the first-principles investigation of the electronic structure of correlated Mott insulators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available