4.7 Article

Patchy sticky hard spheres: Analytical study and Monte Carlo simulations

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 23, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2805066

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [EP/D072751/1] Funding Source: researchfish
  2. EPSRC [EP/D072751/1] Funding Source: UKRI

Ask authors/readers for more resources

We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches, distributed so as not to overlap. Two spheres interact via a sticky Baxter potential if the line joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line as a function of the size of the patch (the fractional coverage of the sphere's surface) and of the number of patches within a virial expansion up to third order and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density expansion of the direct correlation function. We find that the locations of the two lines depend sensitively on both the total adhesive coverage and its distribution. The treatment is almost fully analytical within the chosen approximate theory. We test our findings by means of specialized Monte Carlo simulations and find the main qualitative features of the critical behavior to be well captured in spite of the low density perturbative nature of the closure. The introduction of anisotropic attractions into a model suspension of spherical particles is a first step toward a more realistic description of globular proteins in solution. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available