4.7 Article

The surface-tension-driven evolution of a two-dimensional annular viscous tube

Journal

JOURNAL OF FLUID MECHANICS
Volume 593, Issue -, Pages 181-208

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112007008683

Keywords

-

Ask authors/readers for more resources

We consider the evolution of an annular two-dimensional region occupied by viscous fluid driven by surface tension and applied pressure at the free surfaces. We assume that the thickness of the domain is small compared with its circumference, so that it may be described as a thin viscous sheet whose ends are joined to form a closed loop. Analytical and numerical solutions of the resulting model are obtained and we show that it is well posed whether run forwards or backwards in time. This enables us to determine, in many cases explicitly, which initial shapes will evolve into a desired final shape. We also show how the application of an internal pressure may be used to control the evolution. This work is motivated by the production of non-axisymmetric capillary tubing via the Vello process. Molten glass is fed through a die and drawn off vertically, while the shape of the cross-section evolves under surface tension and any applied pressure as it flows downstream. Here the goal is to determine the die shape required to achieve a given desired final shape, typically square or rectangular. We conclude by discussing the role of our two-dimensional model in describing the three-dimensional tube-drawing process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available