4.7 Article

Supersonic molecular beam studies of dissociative adsorption of H2 on Ru(0001)

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2813413

Keywords

-

Ask authors/readers for more resources

We examined reactivity of H-2 on Ru(0001) using molecular beam techniques and we compared our results to experimental results for similar systems. The dissociative adsorption of H-2 on Ru(0001) is similar to that on Pt(111) and Ni(111), although on ruthenium nonactivated adsorption is strongly suggested. However, we find no clear signature of a steering- or precursor-based mechanism that favors nonactivated reaction paths at low kinetic energy. In comparison to Pd(111) and Rh(111) our results indicate that a universal mechanism enhancing reactivity at low energy does not have a mass dependence. In addition, we have compared our results to predictions of reactivity for H-2 on Ru(0001) from six-dimensional dynamical calculations using two different generalized gradient approximation functionals. It leads us to conclude that the PW91 functional yields a more accurate value for the minimum energy path but does not impose enough corrugation in the potential. The revised-Perdew-Burke-Ernzerhof (RPBE) functional appears to behave slightly better at higher energies, but we find significant quantitative disagreement. We show that the difference is not due to different energy resolutions between experiment and theory. However, it may be due to a dependence of the reactivity on rotational state or on omission of relevant dimensions in the theoretical description. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available