4.8 Article

Stepwise dynamics of epitaxially growing single amyloid fibrils

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0704305105

Keywords

atomic force microscopy; beta-amyloid; growth dynamics; self-assembly

Ask authors/readers for more resources

The assembly mechanisms of amyloid fibrils, tissue deposits in a variety of degenerative diseases, is poorly understood. With a simply modified application of the atomic force microscope, we monitored the growth, on mica surface, of individual fibrils of the amyloid beta 25-35 peptide with near-subunit spatial and subsecond temporal resolution. Fibril assembly was polarized and discontinuous. Bursts of rapid (up to 300-nm(-1)) growth phases that extended the fibril by approximate to 7 nm or its integer multiples were interrupted with pauses. Stepwise dynamics were also observed for amyloid beta 1-42 fibrils growing on graphite, suggesting that the discontinuous assembly mechanisms may be a general feature of epitaxial amyloid growth. Amyloid assembly may thus involve fluctuation between a fast-growing and a blocked state in which the fibril is kinetically trapped because of intrinsic structural features. The used scanning-force kymography method may be adapted to analyze the assembly dynamics of a wide range of linear biopolymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available