4.7 Article

Role of power-to-gas in an integrated gas and electricity system in Great Britain

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 40, Issue 17, Pages 5763-5775

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.03.004

Keywords

Power-to-gas; Hydrogen electrolysis; Combined gas and electricity networks

Funding

  1. Infrastructure Transition research Consortium [ITRC- EP/101344X/1]
  2. UK Energy Research Consortium (UKERC) [NE/G007748/1]
  3. Engineering and Physical Sciences Research Council [EP/I01344X/2, EP/E036503/1, EP/I013636/1] Funding Source: researchfish
  4. EPSRC [EP/I013636/1, EP/I01344X/2, EP/E036503/1] Funding Source: UKRI

Ask authors/readers for more resources

Power-to-gas (PtG) converts electricity into hydrogen using the electrolysis process and uses the gas grid for the storage and transport of hydrogen. Hydrogen is injected into a gas network in a quantity and quality compatible with the gas safety regulations and thereby transported as a mixture of hydrogen and natural gas to demand centres. Once integrated into the electricity network, FtG systems can provide flexibility to the power system and absorb excess electricity from renewables to produce hydrogen. Injection of hydrogen into the gas network reduces gas volumes supplied from terminals. In order to investigate this concept, hydrogen electrolysers were included as a technology option within an operational optimisation model of the Great Britain (GB) combined gas and electricity network (CGEN). The model was used to determine the minimum cost of meeting the electricity and gas demand in a typical low and high electricity demand day in GB, in the presence of a significant capacity of wind generation. The value of employing power-to-gas systems in the gas and electricity supply system was investigated given different allowable levels of hydrogen injections. The results showed that producing hydrogen from electricity is capable of reducing wind curtailment in a high wind case and decreasing the overall cost of operating the GB gas and electricity network. The northern part of GB was identified as a suitable region to develop hydrogen electrolysis and injection facilities due to its vicinity to a significant capacity of wind generation, as well as the existence of gas network headroom capacity, which is expected to increase as a result of depletion of UK domestic gas resources. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available