4.8 Article

Ligand release-independent transactivation of epidermal growth factor receptor by transforming growth factor-β involves multiple signaling pathways

Journal

ONCOGENE
Volume 27, Issue 5, Pages 614-628

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1210649

Keywords

TGF-beta; EGFR; Src; ROS; NADPH oxidase; E-cadherin

Ask authors/readers for more resources

Many of the signaling responses induced by transforming growth factor-beta (TGF-beta) are mediated by Smad proteins, but there is evidence that it can also signal independently of Smads. Here, we provide evidence that multiple signal pathways induced by TGF-beta 1-including Src family tyrosine kinases (SFKs), generation of reactive oxygen species (ROS), de novo protein synthesis and E-cadherin-dependent cell-cell interactions-transactivate the epidermal growth factor receptor (EGFR), which in turn regulates expression of c-Fos and c-Jun. Immunoprecipitation and immunofluorescence staining showed that EGFR was phosphorylated on tyrosine in response to TGF-beta 1. EGFR transactivation required the activation of SFKs and the production of ROS via NADPH oxidase, but was not dependent on metalloproteases or the release of EGF-like ligands. In addition, the production of ROS was dependent on signaling by specific SFKs as well as de novo protein synthesis. Stable transfection of E-cadherin into MDA-MB-231 cells as well as E-cadherin-blocking assays revealed that E-cadherin-mediated cell-cell interactions were also essential for EGFR transactivation. Finally, EGFR transactivation was involved in the expression of c-Fos and c-Jun via the extracellular signal-regulated kinase signaling cascade. Taken together our data suggest that ligand release-independent transactivation of EGFR may diversify early TGF-beta signaling and represent a novel pathway leading to TGF-beta-mediated gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available