4.5 Article

Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A

Journal

HUMAN MOLECULAR GENETICS
Volume 17, Issue 3, Pages 367-375

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddm314

Keywords

-

Funding

  1. NIGMS NIH HHS [GM062967] Funding Source: Medline
  2. NINDS NIH HHS [R37 NS027036] Funding Source: Medline

Ask authors/readers for more resources

Charcot-Marie-Tooth (CMT) disease type 2A is a progressive, neurodegenerative disorder affecting long peripheral motor and sensory nerves. The most common clinical sign is weakness in the lower legs and feet, associated with muscle atrophy and gait defects. The axonopathy in CMT2A is caused by mutations in Mitofusin 2 (Mfn2), a mitochondrial GTPase necessary for the fusion of mitochondria. Most Mfn2 disease alleles dominantly aggregate mitochondria upon expression in cultured fibroblasts and neurons. To determine whether this property is related to neuronal pathogenesis, we used the HB9 promoter to drive expression of a pathogenic allele, Mfn2(T105M), in the motor neurons of transgenic mice. Transgenic mice develop key clinical signs of CMT2A disease in a dosage-dependent manner. They have a severe gait defect due to an inability to dorsi-flex the hindpaws. Consequently, affected animals drag their hindpaws while walking and support themselves on the hind knuckles, rather than the soles. This distal muscle weakness is associated with reduced numbers of motor axons in the motor roots and severe reduction of the anterior calf muscles. Many motor neurons from affected animals show improper mitochondrial distribution, characterized by tight clusters of mitochondria within axons. This transgenic line recapitulates key motor features of CMT2A and provides a system to dissect the function of mitochondria in the axons of mammalian motor neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available