4.6 Article

In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model

Journal

GLIA
Volume 56, Issue 3, Pages 354-364

Publisher

WILEY
DOI: 10.1002/glia.20617

Keywords

Schwann cells; nerve regeneration; biomaterial; peripheral nervous system; axon guidance

Categories

Ask authors/readers for more resources

Primary motor neurons are difficult to study in conventional culture systems because of their short-term survival without trophic support from glia. In addition, axonal migration on a two-dimensional Petri dish does not reflect the three-dimensional (3D) environment in vivo. A unique in vitro 3D model of motor nerve regeneration was developed to study motor neuron axonal migration and myelination. Mouse spinal cord motor neurons were seeded on a collagen sponge populated with Schwann cells and fibroblasts. This fibroblast-populated sponge was intended to mimic the connective tissue through which motor axons have to elongate in vivo. Addition of conventional neurotrophic supplements was not required for motor neuron survival but was necessary to promote deep neurite outgrowth, as assessed by immunostaining of neurofilament M. A vigorous neurite elongation was detected inside the sponge after only 14 days of neuron culture, reaching more than 850 mu m. The model also allowed the maturation of motor fibers as one-third of them were positive for neurofilament H. Neurites growing in the sponge were subject to myelination when Schwann cells were present, as shown by myelin basic protein immunostaining and electron microscopy. We demonstrated in this model the spontaneous formation of numerous thick myelin sheaths surrounding motor fibers after long-term culture (28 days). Thus, this model might be a valuable tool to study the effect of various cells and/or attractive or repulsive molecules on motor neurite outgrowth in vitro and also for the study of myelination and pathogenesis of motor neuron diseases. (C) 2007 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available