4.8 Article

Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 48, Pages 26549-26556

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b07768

Keywords

layered SnS2; reduced graphene nanoribbons; lithium ion batteries; full cell; synergistic effect

Funding

  1. AFOSR MURI program [FA9550-12-1-0035]
  2. AFOSR [FA9550-14-1-0111]
  3. Chinese scholarship council (CSC)

Ask authors/readers for more resources

A nanocomposite material made of layered tin disulfide (SnS2) nanoplates vertically grown on reduced graphene oxide nanoribbons (rGONRs) has been successfully developed as an anode in lithium ion batteries by a facile method. At a rate of 0.4 A/g, the material exhibits a high discharge capacity of 823 mAh/g even after 800 cycles. It shows excellent rate stability when the current density varies from 0.1 to 3.0 A/g with a Coulombic efficiency larger than 99%. In order to demonstrate the anode material for practical applications, SnS2-rGONR/LiCoO2 full cells were constructed. To the best of our knowledge, this is the first time that a full cell has been successfully developed using metal chalcogenides as an anode. The full cell delivers a high capacity of 642 mAh/g at 0.2 A/g, superior rate, and cycling stability after long-term cycling. Moreover, the full cell has a high output working voltage of 3.4 V. These excellent lithium storage performances in half and full cells can be mainly attributed to the synergistic effect between the highly conductive network of rGONRs and the high lithium-ion storage capability of layered SnS2 nanoplates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available