4.5 Article

Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice

Journal

FUNCTIONAL & INTEGRATIVE GENOMICS
Volume 8, Issue 1, Pages 33-42

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10142-007-0057-4

Keywords

comparative genomics; genome mapping; wheat; tillering; synteny; Triticum monococcum

Ask authors/readers for more resources

Changes in plant architecture have been central to the domestication of wild species. Tillering or the degree of branching determines shoot architecture and is a key component of grain yield and/or biomass. Previously, a tiller inhibition mutant with monoculm phenotype was isolated and the mutant gene (tin3) was mapped in the distal region of chromosome arm 3A(m)L of Triticum monococcum. As a first step towards isolating a candidate gene for tin3, the gene was mapped in relation to physically mapped expressed sequence tags (ESTs) and sequence tag site (STS) markers developed based on synteny with rice. In addition, we investigated the relationship of the wheat region containing tin3 with the corresponding region in rice by comparative genomic analysis. Wheat ESTs that had been previously mapped to deletion bins provided a useful framework to identify closely related rice sequences and to establish the most likely syntenous region in rice for the wheat tin3 region. The tin3 gene was mapped to a 324-kb region spanned by two overlapping bacterial artificial chromosomes (BACs) of rice chromosome arm 1L. Wheat-rice synteny was exceptionally high at the tin3 region despite being located in the high-recombination, gene-rich region of wheat. Identification of tightly linked flanking EST and STS markers to the tin3 gene and its localization to highly syntenic rice BACs will assist in the future development of a high-resolution map and map-based cloning of the tin3 gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available