4.7 Article

A facile and rapid route to synthesize CuOx/Ce0.8Zr0.2O2 catalysts with high performance for CO preferential oxidation (CO-PROX)

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 40, Issue 36, Pages 12478-12488

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.07.063

Keywords

CO-PROX; CuO-Ce0.8Zr0.2O2; Synthesis method

Funding

  1. National Natural Science Foundation of China [21267011, 21367015, U1402233]
  2. Young Academic and Technical Leader Raising Foundation of Yunnan Province [2008py010]

Ask authors/readers for more resources

CuO(10)-Ce0.8Zr0.2O2-UGC-300 (CuO-Ce0.8Zr0.2O2 prepared by urea grind combustion method, with 10 wt.% CuO loading and calcined at 300 degrees C) and CuO(10)-Ce0.8Zr0.2O2-IWI-300 (prepared by incipient wetness impregnation method) catalysts were tested for CO-PROX. It was noticed that both the CO conversion and the O-2 selectivity of CuO(10)-Ce0.8Zr0.2O2-UGC-300 are higher than those of CuO(10)-Ce0.8Zr0.2O2-IWI-300. The high performance catalytic activities of CuO(10)-Ce0.8Zr0.2O2-UGC-300 have been attributed to the synergistic effects of highly dispersed Cu species together with the stronger interaction between CuO and the support. The effect of the CuO content and calcination temperature on the catalytic activity of the CuO-Ce0.8Zr0.2O2 catalysts were investigated in detail. The catalyst with 10 wt.% CuO loading and calcined at 300 degrees C exhibited the highest catalytic activity. CuO(10)-Ce0.8Zr0.2O2-UGC-300 catalyst exhibited excellent adaptability of space velocity from 12,000 h(-1) to 36,000 h(-1) and with good tolerance towards CO2 and H2O. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available