4.5 Review

The importance of talc and chlorite hybrid rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction melange of New Caledonia

Journal

CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
Volume 155, Issue 2, Pages 181-198

Publisher

SPRINGER
DOI: 10.1007/s00410-007-0236-2

Keywords

-

Ask authors/readers for more resources

The transfer of fluid and trace elements from the slab to the mantle wedge cannot be adequately explained by simple models of slab devolatilization. The eclogite-facies melange belt of northern New Caledonia represents previously subducted oceanic crust and contains a significant proportion of talc and chlorite schists associated with serpentinite. These rocks host large quantities of H2O and CO2 and may transport volatiles to deep levels in subduction zones. The bulk-rock and stable isotope compositions of talc and chlorite schist and serpentinite indicate that the serpentinite was formed by seawater alteration of oceanic lithosphere prior to subduction, whereas the talc and chlorite schists were formed by fluid-induced metasomatism of a melange of mafic, ultramafic and metasedimentary rocks during subduction. In subduction zones, dehydration of talc and chlorite schists should occur at sub-arc depths and at significantly higher temperatures (similar to 800 degrees C) than other lithologies (400-650 degrees C). Fluids released under these conditions could carry high trace-element contents and may trigger partial melting of adjacent pelitic and mafic rocks, and hence may be vital for transferring volatile and trace elements to the source regions of arc magmas. In contrast, these hybrid rocks are unlikely to undergo significant decarbonation during subduction and so may be important for recycling carbon into the deep mantle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available