4.7 Article

Hydrogen adsorption and diffusion in synthetic Na-montmorillonites at high pressures and temperature

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 40, Issue 6, Pages 2698-2709

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2014.12.038

Keywords

Underground hydrogen storage; Synthetic clays; Montmorillonite; Neutron scattering; QENS; Hydrogen adsorption

Funding

  1. Andra (Agence Nationale pour la Gestion des Dechets Radioactifs) in the framework of the 'GL Transfert' programme

Ask authors/readers for more resources

Sodium montmorillonite (Na-Mt) was synthesized with the aim to investigate the adsorption and diffusion of hydrogen gas in a model smectite at high pressures (up to 90 bar) and non-cryogenic temperature (363 K). Na-Mt samples were synthesized from hydrogels in mild conditions (493 K and autogenous pressure). Two further Na-Mt samples with different levels of structural iron were prepared to investigate the effect of iron on the textural and hydrogen adsorption properties. Structural and elemental analyses confirmed that well crystalline smectite samples were obtained according to the nominal chemical formulae. Nitrogen adsorption-desorption isotherms revealed that the synthesized materials have specific areas in the range 90-120 m(2)/g and are mainly mesoporous. High pressure volumetric measurements showed that hydrogen absorption at 363 K saturated between 40 and 60 bar, reaching 0.2 +/- 0.02 wt% (i.e. similar to 1.0 mmol/g) at the plateau. Quasielastic neutron scattering revealed ' that hydrogen diffuses inside the clay porous network according to the Fick's law (continuous diffusion), while jump diffusion cannot be excluded at distances lower than 6.3 angstrom, i.e. less than the one between two Na+ exchangeable ions. The hydrogen self-diffusion coefficients in the temperature range 25-300 K were determined to fall in the interval 0.1-1.0 10(-7) m(2) s(-1). The results are compared with H-2(g) adsorption and diffusion in other systems. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available