4.6 Article

Transient global cerebral ischemia induces a massive increase in protein sumoylation

Journal

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
Volume 28, Issue 2, Pages 269-279

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.jcbfm.9600523

Keywords

arsenite; mice; oxidative stress; SUMO conjugation; transient forebrain ischemia; Ubc9

Ask authors/readers for more resources

A new group of proteins, small ubiquitin-like modifier ( SUMO) proteins, has recently been identified and protein sumoylation has been shown to play a major role in various signal transduction pathways. Here, we report that transient global cerebral ischemia induces a marked increase in protein sumoylation. Mice were subjected to 10 mins severe forebrain ischemia followed by 3 or 6 h of reperfusion. Transient cerebral ischemia induced a massive increase in protein sumoylation by SUMO2/3 both in the hippocampus and cerebral cortex. SUMO2/3 conjugation was associated with a decrease in levels of free SUMO2/3. After ischemia, protein levels of the SUMO-conjugating enzyme Ubc9 were transiently decreased in the cortex but not in the hippocampus. We also exposed HT22 cells to arsenite, a respiratory poison that impairs cytoplasmic function and induces oxidative stress. Arsenite exposure induced a marked rise in protein sumoylation, implying that impairment of cytoplasmic function and oxidative stress may be involved in the massive post-ischemic activation of SUMO conjugation described here. Sumoylation of transcription factors has been shown to block their activation, with some exceptions such as the heat-shock factor and the hypoxia-responsive factor, where sumoylation blocks their degradation, and the nuclear factor-kappa B (NF-kappa B) essential modulator where sumoylation leads to an activation of NF-kappa B. Because protein sumoylation is known to be involved in the regulation of various biologic processes, the massive post-ischemic increase in protein sumoylation may play a critical role in defining the final outcome of neurons exposed to transient ischemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available