4.1 Article

Strong constraints to independent nesting in a facultatively social bee: quantifying the effects of enemies-at-the-nest

Journal

INSECTES SOCIAUX
Volume 55, Issue 1, Pages 74-78

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00040-007-0972-3

Keywords

ecological constraints; social evolution; Allodapini; reproductive skew; ants

Categories

Ask authors/readers for more resources

Constraints to independent nesting play a key role in the understanding of social evolution in insects, but the source and the magnitude of such constraints are poorly known for many key taxa. In allodapine bees it is known that solitary nesting females have low rates of successful brood rearing and that this drives selection for cooperative nesting. It has been hypothesized that these constraints are due to the presence of enemies-at-the-nest, such as ants, but no direct link has been demonstrated between such enemies and colony failure. We set up an experiment in which solitary founded nests of an Australian allodapine bee, Exoneura nigrescens, were either protected from non-flying predators or left unprotected, and compared the resulting colony survival and brood production rates. We found that protected colonies have much higher rates of survival and that the constraints to independent nesting are extreme, with a mean of less than one offspring per nest at the end of the brood rearing period. This means that cooperative nesting is essential for this species to persist in its habitat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available