4.6 Article

Preparation and properties of physically crosslinked sodium carboxymethylcellulose/poly(vinyl alcohol) complex hydrogels

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 107, Issue 3, Pages 1568-1572

Publisher

WILEY
DOI: 10.1002/app.27203

Keywords

drug delivery systems; hydrogels; stimuli-responsivepolymers; structure-property relations; water-soluble polymers

Ask authors/readers for more resources

A series of physically crosslinked complex hydrogels of poly(vinyl alcohol) (PVA) and sodium carboxymethylcellulose (CMC) were prepared via physical mixing and a freeze/thaw technique. The morphology of the CMC/PVA complex gels was analyzed with differential scanning calorimetry and wide-angle X-ray diffraction. It was found that the crystallinity and melting temperature of the complex gels decreased, whereas the glass-transition temperature increased, with an increase in the content of CMC. The reswelling of the complex gels was pH-responsive and relied on the content of CMC and the freeze/ thaw cycles. A network structure model of the complex gel was presented. PVA crystalline regions served as physical crosslinks; the interaction between CMC and PVA resulted in intramolecular entanglements. It was also found that the model drug hemoglobin was released completely from the complex hydrogels in 4 h, and its release rate increased with an increase in the content of CMC. (c) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available