4.6 Article

Autophosphorylation docking site tyr-867 in mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-κB transcriptional activation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 6, Pages 3618-3627

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M706906200

Keywords

-

Ask authors/readers for more resources

Efficient clearance of apoptotic cells is essential for tissue homeostasis, allowing for cellular turnover without inflammatory consequences. The Mer (Nyk and c-Eyk) receptor tyrosine kinase (Mertk) is involved in two aspects of apoptotic cell clearance by acting as a receptor for Gas6, a gamma-carboxylated phosphatidylserine-binding protein that bridges apoptotic and viable cells. First, Mertk acts in a bona fide engulfment pathway in concert with alpha v beta 5 integrin by regulating cytoskeletal assemblages, and second, it acts as a negative regulator for inflammation by down-modulating pro-inflammatory signals mediated from bacterial lipopolysaccharide-Toll-like receptor 4 (TLR4) signaling, and hence recapitulating anti-inflammatory immune modulation by apoptotic cells. Here we describe Mertk postreceptor events that govern phagocytosis and cytoskeletal signaling are principally mediated by autophosphorylation site Tyr-867. Using the Mertk Y867F mutant and pharmacological inhibitors, we show that Tyr-867 is required for phosphatidylinositol 3-kinase and phospholipase C gamma 2 activation; their activation in turn elicits protein kinase C-dependent signals that act on the actin cytoskeleton. Although Mertk(Y867F) blocked the tyrosine phosphorylation of FAK on Tyr-861 and p130(cas) and also abrogated the phagocytosis of apoptotic cells, this mutant did not suppress lipopolysaccharide-inducible NF-kappa B transcription, nor was NF-kappa B activation dependent on the protein kinase C inhibitor, calphostin C. Finally, unlike the cytoskeletal events associated with Tyr-867 autophosphorylation, the trans-inhibition of NF kappa B occurred in a postnuclear-dependent fashion independent of cytosolic I kappa B phosphorylation and p65/RelA sequestration. Taken together, these data suggest that Mertk has distinct and separable effects for phagocytosis and for resolving inflammation, providing a molecular rationale for how immune licensing and inflammation can be dissociated from phagocytosis in a single phagocytic receptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available