4.6 Article

Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ)

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 8, Pages 4723-4729

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M704147200

Keywords

-

Ask authors/readers for more resources

Mesenchymal stem cells (MSCs) can differentiate into multiple cell lineages, including osteoblasts and adipocytes. We reported previously that glucocorticoid-induced leucine zipper (GILZ) inhibits peroxisome proliferator-activated receptor gamma-2 (Ppar gamma 2) expression and blocks adipocyte differentiation. Here we show that overexpression of GILZ in mouse MSCs, but not MC3T3-E1 osteoblasts, increases alkaline phosphatase activity and enhances mineralized bone nodule formation, whereas knockdown of Gilz reduces MSC osteogenic differentiation capacity. Consistent with these observations, real-time reverse transcription-PCR analysis showed that both basal and differentiation-induced transcripts of the lineage commitment gene Runx2/Cbfa1, as well as osteoblast differentiation marker genes including alkaline phosphatase, type I collagen, and osteocalcin, were all increased in GILZ-expressing cells. In contrast, the mRNA levels of adipogenic Ppar gamma 2 and C/ebp alpha were significantly reduced in GILZ-expressing cells under both osteogenic and adipogenic conditions. Together, our results demonstrate that GILZ functions as a modulator of MSCs and that overexpression of GILZ shifts the balance between osteogenic and adipogenic differentiation of MSCs toward the osteogenic pathway. These data suggest that GILZ may have therapeutic value for stem cell-based therapies of metabolic bone diseases, such as fracture repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available