4.6 Article

Critical Role of Vascular Endothelial Growth Factor Secreted by Mesenchymal Stem Cells in Hyperoxic Lung Injury

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1165/rcmb.2013-0385OC

Keywords

stem cells; cell transplantation; newborn; lung injury; vascular endothelial growth factor

Funding

  1. Korean Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea [HI12C1821 (A121968)]
  2. National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology
  3. Samsung Medical Center [GFO1140091]

Ask authors/readers for more resources

Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) protects against neonatal hyperoxic lung injury by a paracrine rather than a regenerative mechanism. However, the role of paracrine factors produced by the MSCs, such as vascular endothelial growth factor (VEGF), has not been delineated. This study examined whether VEGF secreted by MSCs plays a pivotal role in protecting against neonatal hyperoxic lung injury. VEGF was knocked down in human UCB-derived MSCs by transfection with small interfering RNA specific for human VEGF. The in vitro effects of MSCs with or without VEGF knockdown or neutralizing antibody were evaluated in a rat lung epithelial (L2) cell line challenged with H2O2. To confirm these results in vivo, newborn Sprague-Dawley rats were exposed to hyperoxia (90% O-2) for 14 days. MSCs (1 x 10(5) cells) with or without VEGF knockdown were administered intratracheally at postnatal Day 5. Lungs were serially harvested for biochemical and histologic analyses. VEGF knockdown and antibody abolished the in vitro benefits of MSCs on H2O2-induced cell death and the upregulation of inflammatory cytokines in L2 cells. VEGF knockdown also abolished the in vivo protective effects of MSCs in hyperoxic lung injury, such as the attenuation of impaired alveolarization and angiogenesis, reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive and ED-1-positive cells, and down-regulation of proinflammatory cytokine levels. Our data indicate that VEGF secreted by transplanted MSCs is one of the critical paracrine factors that play seminal roles in attenuating hyperoxic lung injuries in neonatal rats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available