4.6 Article

Cigarette Smoke-Induced Disruption of Bronchial Epithelial Tight Junctions Is Prevented by Transforming Growth Factor-β

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1165/rcmb.2013-0090OC

Keywords

zonula occludens; airway epithelium; chronic obstructive pulmonary disease; ciliated cell

Funding

  1. Helmholtz Association
  2. RISE fellowship from the German Academic Exchange Service (DAAD) [PKZ: A/12/07058]

Ask authors/readers for more resources

The airway epithelium constitutes an essential immunological and cytoprotective barrier to inhaled insults, such as cigarette smoke, environmental particles, or viruses. Although bronchial epithelial integrity is crucial for airway homeostasis, defective epithelial barrier function contributes to chronic obstructive pulmonary disease (COPD). Tight junctions at the apical side of epithelial cell-cell contacts determine epithelial permeability. Cigarette smoke exposure, the major risk factor for COPD, is suggested to impair tight junction integrity; however, detailed mechanisms thereof remain elusive. We investigated whether cigarette smoke extract (CSE) and transforming growth factor (TGF)-beta 1 affected tight junction integrity. Exposure of human bronchial epithelial cells (16HBE14o(-)) and differentiated primary human bronchial epithelial cells (pHBECs) to CSE significantly disrupted tight junction integrity and barrier function. Specifically, CSE decreased transepithelial electrical resistance (TEER) and tight junction-associated protein levels. Zonula occludens (ZO)-1 and ZO-2 protein levels were significantly reduced and dislocated from the cell membrane, as observed by fractionation and immunofluorescence analysis. These findings were reproduced in isolated bronchi exposed to CSE ex vivo, as detected by real-time quantitative reverse-transcriptase PCR and immunohistochemistry. Combined treatment of 16HBE14o(-) cells or pHBECs with CSE and TGF-beta 1 restored ZO-1 and ZO-2 levels. TGF-beta 1 cotreatment restored membrane localization of ZO-1 and ZO-2 protein and prevented CSE-mediated TEER decrease. In conclusion, CSE led to the disruption of tight junctions of human bronchial epithelial cells, and TGF-beta 1 counteracted this CSE-induced effect. Thus, TGF-beta 1 may serve as a protective factor for bronchial epithelial cell homeostasis in diseases such as COPD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available