4.8 Article

Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation

Journal

MOLECULAR PSYCHIATRY
Volume 13, Issue 3, Pages 285-292

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.mp.4002093

Keywords

Wnt; lithium; mood stabilizer; neurogenesis; stem cell; major depression

Funding

  1. NIMH NIH HHS [K08MH74362, T32MH1993808] Funding Source: Medline

Ask authors/readers for more resources

Neural stem cells give rise to new hippocampal neurons throughout adulthood, and defects in neurogenesis may predispose an individual to mood disorders, such as major depression. Our understanding of the signals controlling this process is limited, so we explored potential pathways regulating adult hippocampal progenitor (AHP) proliferation and neuronal differentiation. We demonstrate that the mood stabilizer lithium directly expands pools of AHPs in vitro, and induces them to become neurons at therapeutically relevant concentrations. We show that these effects are independent of inositol monophosphatase, but dependent on Wnt pathway components. Both downregulation of glycogen synthase kinase-3 beta, a lithium-sensitive component of the canonical Wnt signaling pathway, and elevated beta-catenin, a downstream component of the same pathway produce effects similar to lithium. In contrast, RNAi-mediated inhibition of beta-catenin abolishes the proliferative effects of lithium, suggesting that Wnt signal transduction may underlie lithium's therapeutic effect. Together, these data strengthen the connection between psychopharmacologic treatment and the process of adult neurogenesis, while also suggesting the pursuit of modulators of Wnt signaling as a new class of more effective mood stabilizers/antidepressants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available