4.6 Article

α1-Antitrypsin Inhibits Epithelial Na+ Transport In Vitro and In Vivo

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1165/rcmb.2008-0384OC

Keywords

alveolar fluid clearance; serine proteases; H441 cells; Xenopus oocytes; ENaC

Funding

  1. NIH [HL031197, HL051173, 5U01ES015676]
  2. Swedish Medical Research Council
  3. Crafoords Foundation
  4. MAS Foundation
  5. Grifol's Institute

Ask authors/readers for more resources

A variety of studies have shown that Na+ reabsorption across epithelial cells depends on the protease-antiprotease balance. Herein, we investigate the mechanisms by which alpha(1)-antitrypsin (A1AT), a major anti-serine protease in human plasma and lung epithelial fluid and lacking a Kunitz domain, regulates amiloride-sensitive epithelial Na+ channel (ENaC) function in vitro and in vivo. A1AT (0.05 mg/ml = 1 mu M) decreased ENaC currents across Xenopus laevis oocytes injected with human alpha, beta, gamma-ENaC (hENaC) cRNAs, and human lung Clara-like (H441) cells expressing native ENaC, in a partially irreversible fashion. MAT also decreased ENaC single-channel activity when added in the pipette but not in the bath solutions of ENaC-expressing oocytes patched in the cell-attached mode. Incubation of A1AT with peroxynitrite (ONOO-), an oxidizing and nitrating agent, abolished its antiprotease activity and significantly decreased its ability to inhibit ENaC. Intratracheal instillation of normal but not ONOO--treated A1AT (1 mu M) in C57BL/6 mice also decreased Na+-dependent alveolar fluid clearance to the same level as amiloride. Incubation of either H441 cells or ENaC-expressing oocytes with normal but not ONOO--treated MAT decreased their ability to cleave a substrate of serine proteases. A1AT had no effect on amiloride-sensitive currents of oocytes injected with hENaC bearing Liddle mutations, presumably because these channels remain at the surface longer than the wild-type channels. These data indicate that MAT may be an important modulator of ENaC activity and of Na+-dependent fluid clearance across the distal lung epithelium in vivo by decreasing endogenous protease activity needed to activate silent ENaC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available