4.6 Article

Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation

Journal

PLANT GROWTH REGULATION
Volume 54, Issue 2, Pages 179-188

Publisher

SPRINGER
DOI: 10.1007/s10725-007-9240-9

Keywords

antioxidative enzymes; glutathione S-transferase; hydrogen peroxide; nickel; proline; Triticum aestivum L.

Categories

Ask authors/readers for more resources

Wheat (Triticum aestivum L. cv. 'Zyta') seedlings were treated with 10, 100 and 200 mu M Ni. Tissue Ni accumulation, length, relative water content (RWC), proline and H2O2 concentrations as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and glutathione S-transferase (GST) were studied in the shoots and roots after 6 days of Ni exposure. Treatment with Ni, except for its lowest concentration, resulted in a significant reduction in wheat growth. In comparison to the shoots, the roots showed greater inhibition of elongation, which corresponded with higher accumulation of Ni in these organs. Both shoots and roots responded to Ni application with a decrease in RWC and enhancement in proline concentration. Greater dehydration of the shoot tissue was accompanied by more intense accumulation of proline. Treatment of the wheat seedlings with the highest concentration of Ni led to about 60% increase in H2O2 concentration in both studied organs. Apart from CAT, constitutive activities of antioxidative enzymes were much higher in the roots than in the shoots. Exposure of the seedlings to Ni resulted in SOD activity decline, which was more marked in the roots. While the shoots showed a substantial decrease (up to 30%) in CAT activity, in the roots the activity of this enzyme remained unchanged. After Ni application APX, POD and GST activities increased several-fold in the shoots, whereas in the roots they were not significantly altered. The results suggest that differential antioxidative responses of the shoots and roots of wheat seedlings to Ni stress might be related to diverse constitutive levels of antioxidant enzyme activities in both organs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available