4.4 Article

Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration

Journal

PSYCHOPHARMACOLOGY
Volume 197, Issue 1, Pages 83-94

Publisher

SPRINGER
DOI: 10.1007/s00213-007-1008-4

Keywords

neonatal diet; high fat; dopamine; behavioral sensitization; leptin

Funding

  1. NIDA NIH HHS [R01 DA007610, DA07610] Funding Source: Medline

Ask authors/readers for more resources

Rationale Early environment can shape the development and function of the mesocorticolimbic dopamine (DA) system and represents a possible risk factor for adult pathologies. One critical variable in the early environment is nutrition, and exposure to high fat (HF) in adulthood is known to change this DA system. Objectives We tested whether perinatal HF intake in rats could have long-term effects on DA function and behavior in adult offspring. Materials and methods Rat dams were fed either a control (5% fat, CD) or high fat (30% fat, HF) diet during the last week of gestation and lactation, and adult offspring were tested (PND 56-90) after weaning on CD. Locomotor responses to acute and repeated doses of D-amphetamine (AMP, 0.75 mg/kg bw) were determined as were indices of DA function in the ventral tegmental area (VTA), nucleus accumbens (NAc), and the prefrontal cortex (PFC). Results Adult HF offspring displayed increased tyrosine hydroxylase expression in the VTA and NAc and significant increases in DA and DOPAC content in the NAc, suggesting an elevated DA tone in this target field. In the NAc, there were no significant changes in D1, D2 receptors, or DA transporter (DAT) levels between diet groups. Perinatal HF feeding reduced AMP-induced locomotion and behavioral sensitization to AMP, suggesting that early diet might have caused long-lasting desensitization of postsynaptic receptor mechanisms in the NAc. Conclusions Our results demonstrate that both synthetic activity in VTA neurons and the responsiveness of accumbens DA neurons is altered by maternal nutrition. These effects subside long after termination of exposure to the HF diet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available