4.7 Article

Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 40, Issue 32, Pages 10150-10157

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.06.061

Keywords

moS(2); Carbon; Composite; Supercapacitor

Funding

  1. National Natural Science Foundation of China [U1205112, 21301060, 61306077]
  2. Doctoral Supervisor Project of Chinese Ministry of Education [20123501110001]
  3. Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University [ZQN-PY106]
  4. Program for New Century Excellent Talents in Fujian Province University [2014FJ-NCET-ZR02]

Ask authors/readers for more resources

A mesoporous molybdenum disulfide/carbon (MoS2/C) composite with flower-like morphology resulting from the decoration of carbon by MoS2 interlaced nanosheets was synthesized by a facile hydrothermal route, and utilized for the electrode material of supercapacitor. The morphologies and structures of materials were characterized by field emission scanning electron microscopy, X-ray diffraction, Raman spectrum and N-2 adsorption desorption isotherm. Electrochemical properties of materials were evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy tests of two-electrode supercapacitors. The results indicate that the complex of carbon and MoS2 can increase the electrical conductivity and can get thinner MoS2 nanosheets leading to the increment of specific surface area, which result in the improvement in the electrochemical performances of material. The specific capacitance of MoS2/C composite reaches 201.4 F ri at a current density of 0.2 A cl in a two-electrode supercapacitor, which is higher than those of pure MoS2 and carbon. Additionally, the MoS2/C-based supercapacitor exhibits high rate capability and long cyclic durability. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available