4.4 Article

Metabolite profiles of interacting mycelial fronts differ for pairings of the wood decay basidiomycete fungus, Stereum hirsutum with its competitors Coprinus micaceus and Coprinus disseminatus

Journal

METABOLOMICS
Volume 4, Issue 1, Pages 52-62

Publisher

SPRINGER
DOI: 10.1007/s11306-007-0100-4

Keywords

metabolite profiling; basidiomycete fungi; mycelial interactions

Funding

  1. Biotechnology and Biological Sciences Research Council [BB/C519038/1, MET20484] Funding Source: researchfish
  2. Medical Research Council [MC_qA137293] Funding Source: researchfish
  3. MRC [MC_qA137293] Funding Source: UKRI

Ask authors/readers for more resources

The paper presents the first proof-of principle study of metabolite profiles of the interacting mycelial fronts of a wood decomposer basidiomycete, Stereum hirsutum, paired with two competitor basidiomycetes, Coprinus disseminatus and C. micaceus, using TLC and GC-TOF-MS profiling. GC-TOF-MS profiles were information rich, with a total of 190 metabolite peaks detected and more than 120 metabolite peaks detected per sample. The metabolite profiles were able to discriminate between the interactions of S. hirsutum with the two species of Coprinus. In confrontation with C. micaceus, where S. hirsutum mycelial fronts always overgrew those of C. micaceus, there were down-regulations of metabolites in the interaction zone, compared to monocultures of both S. hirsutum and C. micaceus. In contrast, in pairings with C. disseminatus, whose mycelia overgrew those of S. hirsutum, there were some up-regulations compared with monoculture controls, the majority of the metabolites being characteristic of the S. hirsutum monoculture profile. These differences indicate that up-regulation of metabolites in the mycelia of S. hirsutum may be connected to a defensive role or to stress. The results also show proof of principle for the employment of metabolic profiling for biological discovery studies of metabolites produced by fungi that could be applied to natural product screening programmes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available