4.2 Article

Changes in cytochrome P450 side chain cleavage expression in the rat hippocampus after kainate injury

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 186, Issue 1, Pages 143-149

Publisher

SPRINGER
DOI: 10.1007/s00221-007-1209-4

Keywords

cytochrome P450 side chain cleavage; pregnenolone; neurosteroids; cholesterol; oxysterols; kainate excitotoxicity; neurodegeneration

Categories

Ask authors/readers for more resources

Our previous study showed an increase in total cholesterol level of the hippocampus after kainate-induced injury, but whether this is further metabolized to neurosteroids is not known. The first step in neurosteroid biosynthesis is the conversion of cholesterol to pregnenolone by the enzyme cytochrome P450 side chain cleavage (P450scc). This study was carried out to elucidate the expression of this enzyme in the kainate-lesioned rat hippocampus. A net decrease in P450scc protein was detected in hippocampal homogenates by Western blots at 2 weeks post-kainate injection (time of peak cholesterol concentration after kainate injury). Immunohistochemistry showed decreased labeling of the enzyme in neurons, but increased expression in a small number of astrocytes. The level of pregnenolone was also analyzed using a newly developed gas chromatography-mass spectrometry (GC-MS) method, optimized for the rat hippocampus. A non-significant tendency to a decrease in pregnenolone level was detected 2 weeks post-lesion. This is in contrast to a large increase in oxysterols in the lesioned hippocampus at this time (He et al. 2006). Together, they indicate that increased cholesterol in the kainate lesioned hippocampus is mostly metabolized to oxysterols, and not neurosteroids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available