4.7 Article

Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate

Journal

PLANT AND SOIL
Volume 304, Issue 1-2, Pages 21-33

Publisher

SPRINGER
DOI: 10.1007/s11104-007-9516-x

Keywords

long-term experiment; organic P; P buffer capacity; P sorption; P transformation; rhizosphere acidification; sequential extraction

Ask authors/readers for more resources

The fate and availability of P derived from granular fertilisers in an alkaline Calcarosol soil were examined in a 65-year field trial in a semi-arid environment (annual rainfall 325 mm). Sequential P fractionation was conducted in the soils collected from the trial plots receiving 0-12 kg P ha(-1)crop(-1), and the rhizosphere soil after growing wheat (Triticum aestivum L. cv. Yitpi) and chickpea (Cicer arietinum L. cv. Genesis 836) for one or two 60-day cycles in the glasshouse. Increasing long-term P application rate over 65 years significantly increased all inorganic P (Pi) fractions except HCl-Pi. By contrast, P application did not affect or tended to decrease organic P (Po) fractions. Increasing P application also increased Olsen-P and resin-P but decreased the P buffer capacity and sorption maxima. Residual P, Pi and Po fractions accounted for an average of 32, 16 and 52% of total P, respectively. All soil P fractions including residual P in the rhizosphere soil declined following 60-day growth of either wheat or chickpea. The decreases were greater in soils with a history of high P application than low P. An exception was water-extractable Po, which increased following plant growth. Changes in various P fractions in the rhizosphere followed the same pattern for both plant species. Biomass production and P uptake of the plants grown in the glasshouse correlated positively with the residual P and inorganic fractions (except HCl-Pi) but negatively with Po in the H2O-, NaOH- and H2SO4-fractions of the original soils. The results suggest that the long-term application of fertiliser P to the calcareous sandy soil built up residual P and non-labile Pi fractions, but these P fractions are potentially available to crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available