4.5 Article

Doubling the size of the glucocorticoid receptor ligand binding pocket by deacylcortivazol

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 28, Issue 6, Pages 1915-1923

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01541-07

Keywords

-

Funding

  1. NIDDK NIH HHS [DK071662, DK066202, R01 DK071662, R01 DK066202] Funding Source: Medline

Ask authors/readers for more resources

A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacyleortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator I reveals that the GR ligand binding pocket is expanded to a size of 1,070 angstrom(3), effectively doubling the size of the GR dexamethasone-binding pocket of 540 angstrom(3) and yet leaving the structure of the coactivator binding site intact. DAC occupies only similar to 50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available