4.5 Article

Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic functionally graded materials

Journal

ACTA MECHANICA
Volume 196, Issue 3-4, Pages 139-159

Publisher

SPRINGER WIEN
DOI: 10.1007/s00707-007-0498-9

Keywords

-

Categories

Ask authors/readers for more resources

The axisymmetric problem of a functionally graded, transversely isotropic, annular plate subject to a uniform transverse load is considered. A direct displacement method is developed that the non-zero displacement components are expressed in terms of suitable combinations of power and logarithmic functions of r, the radial coordinate, with coefficients being undetermined functions of z, the axial coordinate. The governing equations as well as the corresponding boundary conditions for the undetermined functions are deduced from the equilibrium equations and the boundary conditions of the annular plate, respectively. Through a step-by-step integration scheme along with the consideration of boundary conditions at the upper and lower surfaces, the z-dependent functions are determined in explicit form, and certain integral constants are then determined completely from the remaining boundary conditions. Thus, analytical elasticity solutions for the plate with different cylindrical boundary conditions are presented. As a promising feature, the developed method is applicable when the five material constants of a transversely isotropic material vary along the thickness arbitrarily and independently. A numerical example is finally given to show the effect of the material inhomogeneity on the elastic field in the annular plate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available