4.7 Article Proceedings Paper

Smoothing and passivation of special Si(111) substrates:: studied by SPV, PL, AFM and SEM measurements

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 390, Issue 6, Pages 1463-1470

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-007-1738-5

Keywords

surface photovoltage; photoluminescence; atomic force microscopy; electron microscopy; interface state density; wet-chemical surface pretreatment

Ask authors/readers for more resources

Surface sensitive techniques, the field-modulated surface photovoltage, photoluminescence measurements, atomic force microscopy and scanning electron microscopy, were employed to yield detailed information on the influence of wet-chemical treatments on the preparation induced microroughness and electronic properties of wet-chemically passivated Si(111) substrates with special surface morphology. Stepped substrates with evenly distributed atomically flat terraces were prepared and passivated by thin oxide layers, which were used as a starting point for the subsequent H-termination after long storage in air. It was shown that their surface morphology and electronic properties do not degrade. Applying this preparation method to solar cell substrates with randomly distributed Si(111) pyramids, we achieved significantly lower densities of surface states and reduced recombination loss at a-Si:H/c-Si interfaces, compared with conventional pretreatments. The surface microroughness, the density of rechargeable states and the resulting recombination loss on a-Si:H/c-Si heterojunctions were found to be mainly influenced by two steps of surface pretreatment: firstly, the wet-chemical smoothing procedure of structured substrates and, secondly, the removal of native and wet-chemical oxides during the final etching in HF- or NH4F- containing solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available