4.6 Article

Water absorption properties of phosphate glass fiber-reinforced poly-ε-caprolactone composites for craniofacial bone repair

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 107, Issue 6, Pages 3750-3755

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/app.27518

Keywords

biodegradable composites; phosphate glass fiber; moisture absorption; degradation; diffusion coefficient

Ask authors/readers for more resources

The moisture uptake of polymers and composites has increasing significance where these materials are specified for invasive, long-term medical applications. Here we analyze mass gain and the ensuing degradation mechanisms in phosphate glass fiber reinforced poly-epsilon-caprolactone laminates. Specimens were manufactured using in situ polymerization of epsilon-caprolactone around a bed of phosphate glass fibers. The latter were sized with 3-amino-propyltriethoxysilane to control the rate of modulus degradation. Fiber content was the main variable in the study, and it was found that the moisture diffusion coefficient increased significantly with increasing fiber volume fraction. Diffusion, plasticization, and leaching of constituents appear to be the dominant aspects of the process over these short-term tests. (C) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available